Navigation auf uzh.ch

Suche

Department of Informatics - Communication Systems Group

Chao Feng

Contact Information:

Universität Zürich Institut für Informatik (IFI),

BIN 2.E.04 Binzmühlestrasse 14 CH-8050 Zürich

Phone: +41 44 635 43 78

Fax: +41 44 635 68 09

Email: IFI Email

Linkedin: LinkedIn

 
chao

 

Short Bio:

Chao Feng is pursuing a Ph.D. in the Department of Informatics at the University of Zurich. He obtained his MSc. in Informatics from the University of Zurich and a BSc. in Management Information System from Renmin University of China. Chao is currently working as a Ph.D. student and Junior Researcher in the Communication Systems Group, supervised by Prof. Dr. Burkhard Stiller. His research primarily focuses on enhancing the cybersecurity of Internet-of-Things (IoT) and improving the robustness of Decentralized Distributed Machine Learning systems,  especially for Decentralized Federated Learning (DFL).

Lecture Activities:

  • PMMK: Protocols for Multi-media Communications (HS22)
  • IntEco: Internet Economics Seminar (HS22, HS23)
  • CESS: Computer Engineering and Software Systems (FS23)
  • ComSys: Communication Systems (FS23)
  • CNSP: Computer Network Security Principles (HS23)

Research Interests:

Cybersecurity
Internet of Things (IoT)
Data Mining and Artificial Intelligence

Open Thesis:

Please check here to see list of open thesisIf you are interested to work on a project in the list mentioned above or any other project related to my research area feel free to contact me.

Publications:

2025

  • [Preprint] Chao Feng, Yuanzhe Gao, Alberto Huertas Celdran, Gerome Bovet, Burkhard Stiller: From Models to Network Topologies: A Topology Inference Attack in Decentralized Federated Learning;  arxiv, Zürich, Switzerland, January 2025, URL
  • [Preprint] Chao Feng, Nicolas Fazli Kohler, Alberto Huertas Celdran, Gerome  Bovet, Burkhard Stiller:  ColNet: Collaborative Optimization in Decentralized Federated Multi-task  Learning Systems ;  arxiv, Zürich, Switzerland, January 2025

2024

  • [Full Paper] Chao Feng, Alberto Huertas Celdran, Zien Zeng, Zi Ye, Jan von der Assen, Gerome Bovet, Burkhard Stiller. "Leveraging MTD to Mitigate Poisoning Attacks in Decentralized FL with Non-IID Data." 2024 IEEE International Conference on Big Data (IEEE BigData 2024), Dec 2024, Washington DC, USA, pp.1-10 (To appear, arxiv arXiv.2409.19302)
  • [Preprint] Chao Feng, Hongjie Guan, Alberto Huertas Celdrán, Jan von der Assen, Gérôme Bovet, Burkhard Stiller. "FedEP: Tailoring Attention to Heterogeneous Data Distribution with Entropy Pooling for Decentralized Federated Learning." arXiv, 2024
  • [Full Paper] Chao Feng, Alberto Huertas Celdran, Michael Vuong, Gerome Bovet, Burkhard Stiller. "Voyager: MTD-Based Aggregation Protocol for Mitigating Poisoning Attacks on DFL." NOMS 2024 IEEE Network Operations and Management Symposium, Seoul, Korea, Republic of, 2024, pp.1-9
  • [Full Paper] Chao Feng, Alberto Huertas Celdran, Janosch Baltensperger, Enrique Tomas Matınez Bertran, Gerome Bovet, Burkhard Stiller. "Sentinel: An Aggregation Function to Secure Decentralized Federated Learning." European Conference on Artificial Intelligence, Santiago de Compostela, Spain, October 2024, pp.1-6 
  • [Full Paper] Chao Feng, Alberto Huertas Celdran, Jan von der Assen, Enrique Tomás Martínez Beltrán, Gerome Bovet, Burkhard Stiller. "DART: a Module for Decentralized Federated
    Learning Robustness Analysis." Elsevier ARRAY, 2024
  • [Full Paper] Alberto Huertas Celdran, Chao Feng, Pedro Miguel Sanchez Sanchez, Lynn Zumtaugwald, Gerome Bovet, and Burkhard Stiller. "Assessing the Sustainability and Trustworthiness of Federated Learning Models." Sustainable Computing: Informatics and Systems, 2024, pp.1-12 (Under Review)
  • [Full Paper] Muriel Figueredo Franco, Fabian Künzler, Jan von der Assen, Chao Feng, Burkhard Stiller. "RCVaR: an Economic Approach to Estimate Cyberattacks Costs using Data from Industry Reports." Computers & Security, 2024, vol.139, pp.103737.
  • [Full Paper] Enrique Tomás Martínez Beltrán, Ángel Luis Perales Gómez, Chao Feng, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, Alberto Huertas Celdrán. "Fedstellar: A Platform for Decentralized Federated Learning." Expert Systems with Applications, 2024, vol.242, pp.122861.
  • [Full Paper] Alberto Huertas Celdrán, Jan von der  Assen, Chao Feng, Sandro Padovan, Gérôme Bovet, Burkhard Stiller: Next Generation of AI-based Ransomware, 2024 IEEE Global Communications Conference: Communication & Information Systems Security, Cape Town, South Africa, December, 2024 (To appear)
  • [Full Paper] Jan von der Assen, Jamo Sharif, Chao Feng, Christian Killer, Gérôme Bovet, Burkhard Stiller: Asset-centric Threat Modeling for AI-based Systems; 2024 IEEE International Conference on Cyber Security and Resilience (CSR), London, England, September 2024, pp 1-8  (To appear)
  • [Preprint] Jan von der Assen, Jamo Sharif, Chao Feng, Gérôme Bovet, Burkhard Stiller: Asset-driven Threat Modeling for AI-based Systems, arXiv e-prints (2024): arXiv:2403, March 2024
  • [Full Paper] Jan von der Assen, Chao Feng, Alberto Huertas Celdran, Raffael Mogicato, Adrian Zermin, Vichhay Ok, Gérôme Bovet, Burkhard Stiller: A Lightweight Data Mining Platform for Dynamic and Reproducible Malware Analysis, 2024 11th Swiss Conference on Data Science (SDS), Zürich, Switzerland, May 2024, pp. 1-6
  • [Preprint] Jan von der Assen, Chao Feng, Alberto Huertas Celdrán, Róbert Oleš, Gérôme Bovet, Burkhard Stiller: GuardFS: a File System for Integrated Detection and Mitigation of Linux-based Ransomware, Available at SSRN, February 2024
  • [Preprint] Alberto Huertas Celdrán, Chao Feng, Sabyasachi Banik, Gerome Bovet, Gregorio Martinez Perez, Burkhard Stiller: De-VertiFL: A Solution for Decentralized Vertical Federated Learning, arXiv e-prints (2024)

2023

  • [Full Paper] Chao Feng, Alberto Huertas Celdran, Pedro Miguel Sanchez Sanchez, Jan Kreischer, Jan von der Assen, Gerome Bovet, Gregorio Martinez Perez, and Burkhard Stiller. "CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation." IEEE Transactions on Dependable and Secure Computing, 2023, pp 1-11 (Under Review)
  • [Full Paper]  Celdrán, Alberto Huertas, Pedro Miguel Sánchez Sánchez, Chao Feng, Gérôme Bovet, Gregorio Martínez Pérez, and Burkhard Stiller. "A Summary of Privacy-preserving and Syscall-based Intrusion Detection System for IoT Sensors Affected by Data Falsification Attacks." In Actas de las VIII Jornadas Nacionales de Investigación en Ciberseguridad: Vigo, 21 a 23 de junio de 2023, pp. 547-548. Universidade de Vigo, 2023.

  • [Full Paper] Chao Feng, Jan von der Assen, Alberto Huertas Celdrán, Steven Näf, Gérôme Bovet, Burkhard Stiller:  FeDef: A Federated Defense Framework Using Cooperative Moving Target Defense2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), Bol/Split, Croatia, June 2023, pp. 1-6.
  • [Full Paper ] Katharina Olga Emilia Müller, Louis Bienz, Bruno Bastos Rodrigues, Chao Feng, Burkhard Stiller: HomeScout: Anti-Stalking Mobile App for Bluetooth Low Energy Devices; The 48th IEEE Conference on Local Computer Networks (LCN), Daytona Beach, Florida, U.S.A., October 2023, pp 1–8.  
  • [Demo] Eryk Schiller, Chao Feng, Rafael Hengen Ribeiro, Francesco Marino, Martin Buck, Burkhard Stiller: TactSR: Utilizing SRv6 to Optimize the Routing Behavior for Tactical Networks; 2023 24th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Boston, USA, June 2023, pp. 1-3. 

2022

  • [Full Paper] K. O. E. Müller, J. von der Assen, C. Feng, and B. Stiller, "An Overview and Ontology of Privacy to Preserve Privacy in Ultra-Wideband Networks," in IEEE International Conference on Privacy Computing, Haikou, China, December 2022, pp. 1-9. 
  • [Full Paper] A. H. Celdrán, P. M. S. Sánchez, C. Feng, G. Bovet, G. M. Pérez and B. Stiller, "Privacy-preserving and Syscall-based Intrusion Detection System for IoT Spectrum Sensors Affected by Data Falsification Attacks," in IEEE Internet of Things Journal, 2022, doi: 10.1109/JIOT.2022.3213889. Link

Supervised Theses

  • [BA] Filip Trendafilov: Implementation of Membership Inference Attack Affecting Federated Learning-based Anomaly Detection System; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, May 2023, URL: link  
  • [BA] Timothy-Till Näscher: Poisoning Attack Behavior Detection in Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, May 2023, URL: link
  • [BA] Michael Vuong: Design and Implementation of a Byzantine Robust Aggregation Mechanism for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2023, URL: link
  • [MA] Janosch Baltensperger: A Secure Aggregation Protocol for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2023, URL: link
  • [BA] Florian Andreas Herzog: Fully Fledged SDN in a LoRa Mesh; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, September 2023, URL: link
  • [BA] Gregory Frommelt: Linux on Tensilica Xtensa; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, September 2023, URL: link
  • [MA] Lynn Zumtaugwald: Designing and Implementing an Advanced Algorithm to Measure the Trustworthiness Level of Federated Learning Models; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2023, URL: link
  • [MA] Róbert Oles: Detection and Classification of Malware using File System Dimensions for MTD on IoT; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, May 2023, URL: link
  • [MA] Jan Kreischer: Federated Reinforcement Learning for Private and Collaborative Selection of Moving Target Defense Mechanisms for IoT Device Security; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, June 2023, URL: link
  • [MA] Chenfei Ma: Design and Prototypical Implementation of the Node Selection Strategy in Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, October 2023, URL: link
  • [MAP] Han, Jing and Cheng, Xi and Zeng, Zien and Ren, Heqing: Creation of New Datasets for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Jan. 2024, URL: link
  • [MA] Ye Zi: Mitigating Poisoning Attacks in Decentralized Federated Learning through Moving Target Defense; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Mar. 2024, URL: link  
  • [IS] Yuanzhe Gao: Design and Implementation of a Privacy Auditing Component for the Decentralized Federated Learning Framework; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Jun. 2024, URL: link  
  • [MA] Xiao Chen: Design and Implementation of an Information Metrics-based Anomaly Model Detector in Decentralized
    Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Jul. 2024, URL: link 

  • [MA] Hongjie Guan: FedEP: Tailoring Attention to Heterogeneous Data Distribution with Entropy Pooling; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, Jul. 2024, URL: link 

  • [MA] Xi Cheng: Design and Implementation of Environmental Sustainability Module for Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2024, URL: link

  • [MA] Wenzhe Li: Design and Implementation of a Black-box Robustness Analysis Module for an DFL Platform; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2024, URL: link
  • [MA] Zien Zeng: Improving the Model Robustness of DFL in Non-IID Environment; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2024, URL: link
  • [MAP] Runxi Cui, Yunlong Li: Novel Poisoning Attacks on Decentralized Federated Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2024, URL: link
  • [IS] Lucas Krauter: Data Exploration and Feature Engineering for an IoT Device Behavior Fingerprinting Dataset; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, August 2024, URL: link
  • [MA] Yuanzhe Gao: Novel Topology Inference Attacks on DFL; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, October 2024, URL: link
  • [MA] Nicolas Kohler: A Solution for Decentralized Federated Multi-Task Learning; Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland, October 2024, URL: link

 

 

Weiterführende Informationen

Title

Teaser text