Efficiency and Information Management in Peer-to-Peer Systems

Invited Talk by the EU Initiative EMANICS @ 1st EMANICS Workshop on Peer-to-Peer Management University of Zürich, Switzerland, 3. March 2008

Dipl.-Math. Dipl.-Inform. Kalman Graffi Prof. Dr.-Ing. **Ralf Steinmetz**

Ralf.Steinmetz@KOM.tu-darmstadt.de

P2P___resource-mgmt_Uni-Zuerich___080303-v.6.ppt

© author(s) of these slides 2008 including research results of the research network KOM and TU Darmstadt otherwise as specified at the respective slide

httc – Hessian Telemedia Technology Competence-Center e.V - www.httc.de

KOM - Multimedia Communications Lab Prof. Dr.-Ing. Ralf Steinmetz (director) Dept. of Electrical Engineering and Information Technology Dept. of Computer Science (adjunct professor) TUD – Technische Universität Darmstadt Merckstr. 25, D-64283 Darmstadt, Germany Tel.+49 6151 166150, Fax. +49 6151 166152 www.KOM.tu-darmstadt.de

3. März 2008

Overview

Overview

1 The Peer-to-Peer Paradigm

Peer-to-Peer Systems:

- Users of a system provide the infrastructure of the system
- Service is provided from users/peers to users/peers
- Peer-to-Peer overlays:
 - virtual networks, providing new functionality
 - E.g. Distributed Hash Tables, Keyword-based Search

Evolution of applications

- File sharing:
 - No Quality of Service (QoS) requirements
- Voice over IP
 - Real-time requirements
- Video-on-demand
 - Real-time and bandwidth requirements

1.1 Trends in Peer-to-Peer Research

Quality aspects gain importance

- Reliability: expected professionalism
- Ease of Use: Multimedia and interactivity

Critical success factor for

- complex P2P applications
- modular P2P applications

Quality aspects:

- Adaptability to scenario, system scale
- Validity of stored data
- Trust of users and mechanisms
- Efficiency ratio between performance and costs

1.2 Quality in Peer-to-Peer Systems

DFG Research Group FOR 733 @ TU Darmstadt QuaP2P

 "Verbesserung der Qualität von Peer-to-Peer-Systemen durch die systematische Erforschung von Qualitätsmerkmalen und deren wechselseitigen Abhängigkeiten"

Approach

- Evaluation using simulation and prototypes
 - PeerfactSim.KOM $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
- Proof-of-Concept of investigated mechanisms using 2 scenarios

Please visit

- www.quap2p.tu-darmstadt.de or www.
- www.peerfactsim.com

1.3 Serious Future Peer-to-Peer Applications

- Modular, component based composition
 - E.g. FreePastry and/with PAST, Scribe,
 - E.g. POST, SplitStream
- A module has to
 - be highly efficient
 - provide Quality of Service

Application Areas

To exploit self-organization abilities of P2P

→Catastrophe scenarios

- require robust mechanisms
- E.g. coping with churn

→Example: Emergency Call Handling

- Hard QoS requirements
- Peer-to-peer mechanisms provide failure-tolerance (and QoS)

2 Towards QoS & Emergency Call Handling

2.1 Serious Application: Emergency Call Handling

Emergency Call Handling is not supported in VoIP (Skype)

- 2009: mandatory for VoIP providers
- P2P fits: all-IP, scalable,
 - but Quality of Service?

Requirements

1. Location critical service:

Find closest/responsible Emergency Station

2. Quality of Service for P2P flows needed

- QoS policy: low delay, low loss
 - contact Emergency Station as soon as possible
 - without message loss

→Goal:

How to solve problem locally ? OR do we need system wide management?

2.2 Our Approach for P2P-based Emergency Call Handling

Challenge 1: Location-based search requirements Approach: Globase.KOM - Geographical LOcation BAsed SEarch

- Engineered for requirements of location based services
- A logical neighbor is a geographical neighbor (like in CAN)
- Tree structure enables search/lookup in O(log N)

Extended with following search mechanisms:

- Closest peer (Emergency Station)
- Peer fulfilling a specific criteria (responsibility)

→ Paper at: A. Kovacevic et al., "Location Awareness...", Special Issue of the Proc. of the IEEE on Adv. In Distr. Multim. Comm., Jan. 2008

2.3 Quality of Service for Overlay Traffic

Challenge 2: Providing Quality of Service for Overlay Traffic

Approach: Scheduling and Active Queue Management (AQM)

- Scheduling: Reordering of packets
- AQM: to decide which message to drop at congestion

Observation:

Classical flows do not exist in P2P overlays

- Many small bursts, rarely from the same peers
- Requires a stateless solution

\rightarrow Existing solutions mainly focus on classical flows

→Need for approaches for Peer-to-Peer systems

→ Paper at: K. Graffi et al., "Overlay Bandwidth Management ..." in Proc. of IEEE Local Computer Networks, Oct. 2007

Overlay Bandwidth Management

Novel substrate "Network Wrapper"

- Between overlay and transport layer:
 - Queues messages
 - Applies Scheduling and AQM solution: HiPNOS.KOM

HiPNOS.KOM: Highest Priority First, No Starvation

- Introduce message priorities for Loss and Delay
- AQM: at congestion, drop message with lowest loss-prio.
- Scheduling: at free bandwidth, send message with highest delay-prio.
- Avoid starvation: Periodically increase delay-prio. of queued messages

Properties of HiPNOS.KOM

- Focus on QoS for overlay flows
- Easy to apply on existing overlays

Overlay Bandwidth Management Results

→ Paper at: K. Graffi et al., "Overlay Bandwidth Management ..." in Proc. of IEEE Local Computer Networks, Oct. 2007

Overlay Bandwidth Management Results

→ Paper at: K. Graffi et al., "Overlay Bandwidth Management ..." in Proc. of IEEE Local Computer Networks, Oct. 2007

Overlay Bandwidth Management Results

→ Paper at: K. Graffi et al., "Overlay Bandwidth Management ..." in Proc. of IEEE Local Computer Networks, Oct. 2007

3 Lessons Learned for QoS in P2P Systems

Results for Scheduling and AQM

- Delay and delay-priority, loss and loss-priority are proportional
- Emergency Calls have always highest priority
- All other messages have lower priority
- Quality of service can be provided

Lessons learned:

- IF ... known:
 - Optimization criteria
 - Set of all alternatives

THEN mechanisms for Quality of Service are easy to adopt

→ Required Information

- Necessary for efficient decisions in distributed systems
- Often missing in Peer-to-Peer systems

4 Towards a Kind of "Efficiency Management"

4.1 Current State of Efficiency Management

TECHNISCHE UNIVERSITÄT DARMSTADT

- i.e. "extracted"
- To gather layer specific information
- To analyze information, (derive optimization goals)
- To apply results for better decisions

→ Separate Information/Efficiency Management Layer for this task

4.2 Our Vision of an Efficiency Management Lifecycle

4.3 Over-Overlay: Efficiency Management System

TECHNISCHE UNIVERSITÄT DARMSTADT

For all structured P2P overlays

- Covered by common API
- Usable by all functional layers in a P2P system

Efficiency Management Architecture

Efficiency Management Architecture

- Built on underlying structured overlay
- Communicates via common API
 - Route to PeerID
- Just an add-on, easy to deploy

Principle

- Each node publishes information updates in the architecture
- Update-tree is established
- Each node knows where to send updates to
- Queries are processed bottom up

Efficiency Management Architecture Details

Over-overlay:

- ID space separated in intervals (domains)
- Peer responsible for a specific ID (e.g. middle) is responsible for ID domain
- Peers in the domain send updates to this Coordinator
- Updates propagated upwards the tree

Supporting Peers for Load Balancing

- Coordinator may chose Supporting Peers
- Good peers chosen by 50/50 ratio
 - Pick e.g. 20 best peers in the domain
 - Best 10 peers in domain advertised one level up
 - Second best 10 peers can be used as support
- Workload can be delegated to supporting peers
- Tree depth / peer load adjustable

4.4 Queries in the Efficiency Management System

Query Type:

- Give me M peers
- Fulfilling specific requirements on
 - Bandwidth, storage space, computational capabilities,
 - Online time, peer load, reputation
 - ... (wide set of requirements definable)

Query processing

- First sent to coordinator of lowest domain
- Query traverses bottom-up, until M matching peers found
- Result is sent then to requesting peer
- Tradeoff:
 - Upper peers in tree know more
 - Load should be kept on lower levels of the tree

Structure of the Efficiency Management Arch.

Query Performance: O(log N) hops

- Scalability:
 - Tree-structure of coordinators form information architecture
 - Supporting peers: Strong peers can take the load

Robustness:

- No additional maintenance needed (done by structured overlay)
- Any peer can fail, no unwanted effects

4.5 Example Application: Replication Layer

Content storage in P2P systems

- Churn is a problem
 - Data may get lost
- \rightarrow Replication is a solution

Challenges

- Which files to replicate?
 - Most requested, rarest?
- At which peers?
 - Most reliable? Highest bandwidth?
- How many replicas?
 - Depends on requirements on availability
- By which peers?

→ Efficiency Management System allows for answers

5 Lessons Learned for Efficiency Management in P2P Systems

Information Management is just ONE part of the Efficiency Management Lifecycle

Next steps:

- To build information analyzing quorum
- To process and analyze gathered system parameters
- Status determination and prediction
- QoS policy determination based on identified QoS requirements

Long-term vision:

- P2P network regulates itself
 - According to QoS constraints towards efficiency
- From self-organization of the peers to self-consciousness of the system

Upcoming Applications:

- P2P-based Grid: Share resources, negotiate service in return with the system
- Modularized, layer-interactive, complex applications

Fragen ? – Any Questions ?

Beauftragter für Informations- und Kommunikationstechnik des Landes Hessen

HA Hessen Agentur GmbH

