

Policy-based Management of Wireless Ad hoc and P2P Networks

Antonis M. Hadjiantonis
CCSR, University of Surrey, UK
a.hadjiantonis@surrey.ac.uk

George Pavlou
NSRL, University College London, UK
g.pavlou@ee.ucl.ac.uk

Outline

Introduction and Motivation

- Self-Management Framework
- Framework Evaluation

HOW ad hoc networks relate to P2P?

WHY use Policy-Based Management?

- WHERE do we have wireless ad hoc networks?
 - Military , disaster relief ...
 - BUT not only (!)
 - Ad hoc networks are (potentially) everywhere
 - → 802.11 IBSS mode (a.k.a. **ad hoc/p2p**)
 - Users can create an ad hoc network on the spot
 - Laptops, PDAs, smartphones etc...
 - Single-hop and fully-connected
- WHY do we need them anyway ?
 - Deploy applications and services
 - E.g. disseminate all workshop material in p2p manner

- Ad hoc for wireless networks can have the analogous potential of P2P for fixed networks
 - if they are easy to setup and use
 - if they are secure and reliable
- Mobile Ad Hoc Networks (MANET)
 - Research emphasis on routing and analytical models
 - Lack of realism in research → negligible market impact
 - BUT wireless Ad Hoc is ubiquitous → 802.11 IBSS mode
- Hybrid ad hoc networks
 - MANET with infrastructure support
 - Multi-hop wireless / Mesh networks
 - Spontaneous/nomadic computing

- Issues and problems with ad hoc networking
 - PHY: Air interface prone to interference (ISM band)
 - MAC: Hidden/exposed Terminal, lack of AP coordination
 - Network: Multi-hop routing, IP addressing
 - Transport: TCP poor wireless performance (congestion control)
 - Application: Default settings not optimal
- Proposal: Self-management/autonomic solutions
- Starting from lower layers : MAC/PHY
 - Interference: significant factor for reduced performance
 - Regulatory issues ignored (regional differences)
 - Auto-configuration not taken for granted

- Self-Management and Autonomic Computing
 - Self-* Capabilities to achieve Self-maintenance
 - +Self-Configuration +Self-Healing
 - +Self-Optimization +Self-Protection

- Proposed Solution
 - Assist devices in self-* decisions
 - + Self-Configuration
 - + Self-Optimization
 - + Regulatory conformance
 - Evaluate conditions and reconfigure

- Why Policy-Based Management (PBM)?
 - High-level policies simplify complex tasks
 - Low-level policies implement objectives
 Event-Conditions-Actions
 - Controlled programmability
 - BUT typically centralized

- Self-* Vs PBM or Self-* with PBM ?
 - Distributed Policy Repository
 - Policies as guidance not as directives
 - User-owned networks → no strict admin control

Self-Management Framework

Framework Evaluation

Self-Management Framework Distributed Policy Repository

- Policy Repository
 - Critical functional element of PBM
 - Encapsulates management logic
 - Resides in core network
 - Replicated for resilience

- PR for wireless ad hoc networks → DPR
 - PDP intermittently connected
 - Multi-hop routes degradation
 - PDP population may fluctuate
 - Increasing heterogeneity
 - Clustered ad hoc networks

Self-Management Framework Distributed Policy Repository

- Management of clustered ad hoc networks
 - Cluster Heads host a PDP
 - PDP spatially dispersed
 - Enforcement in own Cluster,
 i.e. local PEPs
- Coordination of PDP
 - → Hypercluster

- Problem transformed: deployment and maintenance of distributed repository replicas
 - DPR propagation of policies to PDP
 - PDP pull-based retrieval
 - Loose replication based on LDAP
 - → P2P overlay

Self-Management Framework for dynamic channel configuration

- Event-Condition-Action (ECA) sets of policies
 - Events examine desired notifications
 - Conditions evaluate wireless channel
 - Actions ensure regulatory conformance
 - Actions select optimal channel for deployment
 - Actions reconfigure channel for optimized perf.
- Regional Spectrum Regulations
 - Deploy ad hoc network only on allowed channels
 - End-users unaware (default settings)
 - E.g. 802.11b/g: Pi:list1 = 1..11 and Pii:list2 = 1..13.

P#	Event	if {Conditions} then {Actions}
i	SystemBoot	if {region=FCC} then set_criteria(approvedChannels[list ₁])
ii	>>	if {region=EU} then set_criteria(approvedChannels[list ₂])

Self-Management Framework

P#	Event	if {Conditions} then {Actions}
1	Init_new_adhoc	if {ready} then {scanChannels()},{generateScanComplete(results)}
2	ScanComplete(results)	if {otherWLANdetected=true}^{FC:=freeChannels(results), FC=true}^{PC:=preffered(FC,ch_list),PC=true} then {optimizeChannel(PC,algorithm_(criteria_1))}
3	>>	if {otherWLANdetected=true}^{FC:=freeChannels(results), FC=true}^{PC:= preffered(FC,ch_list),PC=false} then {optimizeChannel(FC,algorithm ₂ (criteria ₂))}
4	>>	if {otherWLANdetected=true}^{FC:=freeChannels(results), FC=false} then {optimizeChannel(all, algorithm ₃ (criteria ₃))}
5	NewWLANdetected	<pre>if {dyn_adapt=true} then {generateStartAdapt(newWLANinfo)}</pre>
6	LinkQualityCheck	if {LinkQuality <thr<sub>a}^{dyn_adapt=true} then {generateStartAdapt(cachedWLANinfo)}</thr<sub>
7	StartAdapt(WLANinfo)	<pre>if {channel_distance(WLANinfo,current) < dist} ^{app_specific_metric < thr_b} then {scanChannels()},{generateAdaptChannel(results)}</pre>
8	AdaptChannel(results)	<pre>if {results_evaluation()=true} then {channel_switch(all,algorithm4(criteria4))},{verify()}</pre>

Self-Management Framework

Framework Evaluation

Framework Evaluation Testbed

Hardware

- 10 wireless nodes
- Internal 802.11b/g
- External PCMCIA
- IBSS (a.k.a. ad hoc/p2p)

Software

- wireless-tools (configure interfaces) → using scripts
- airodump-ng (capture packets) → custom version for PBM
- scratchbox (cross-compile source) → for use with ARM proc.

	Operat.System (Kernel)	Processor	Ram (MB)	Wifi support
(2x)Sony Z1XMP	Debian R4.0 (2.6.18)	1500 - Intel	512	802.11bg
(4x)HP iPAQ H5550	Familiar v0.8.4 (2.4.19)	400 - ARM	128	802.11b
(4x)Nokia N800	IT OS2007 (2.6.18)	330 - ARM	128	802.11bg

Framework Evaluation Testbed

- Setup in two ad hoc clusters
 - Ad hoc file transfer within clusters
 - First cluster used PBM support
 - Second acted as interfering WLAN
- Cluster Head can monitor and assess air interface
 - Extracts MAC header (L2) information
 - RF-monitor mode or Promiscuous mode
 - Uses custom packet capturer
 - Modified airodump-ng source
 - Channel selection algorithm
 - Weighted Average WA(x)
 - Metric x: missed frames, avg.pps etc.
 - Closed control loop
 - Inter-layer communication provides feedback

Framework Evaluation Self-Configuration

- Self-configuration of initial ad hoc deployment
 - 20.4% increase of average goodput compared to default settings
 - Up to 33.3% increase for random channel assignment
 - Worst performance for consecutive channels
 - File download duration is accordingly improved

testbed1, 2 (channel)	Goodput testbed1(Mbps)	Goodput decrease (%)	Downl.Time increase (%)
1,1	3.48	-20.38	+20.00
2,1	2.92	-33.27	+46.67
4,1	4.26	-2.68	0.00
6,1	4.38		

Framework Evaluation Self-Optimisation

Ph.1: file transfer $Z \rightarrow J$ (ch.1)

Ph.2: file transfer B→C (ch.1)

P6: LinkQuality: *thr*_a < 50% → P7

P7: Goodput: $thr_b < 3.67 \text{MBps} \rightarrow P8$

P8(AdaptChannel):algorithm

→ channelSwitch: from ch.1 → ch.6

Self-Management Framework

Framework Evaluation

SURREY

- Tangible performance improvement
- + Self-optimization with dynamic channel switch
 - + Peak increase of 33.5%
 - + Average goodput increase by 20.3%
 - from 413.54 KB/s to 518.79KB/s
 - + Download time reduced
 - from 116sec to 50sec for a 46MB file
- + Self-configuration of initial ad hoc deployment
 - + Up to 33.3% increase for random channel assignment
- + Regulatory conformance of ad hoc networks

- HOW ad hoc networks relate to P2P?
 - single-hop P2P using 802.11 IBSS (ad hoc mode)
 - P2P overlays over multi-hop ad hoc networks
- WHY use Policy-Based Management?
 - PBM and policies as middleware
 - Controlled programmability
 - Future-proof solution
 - Technology-independent specification
 - Technology-dependent enforcement

UNIVERSITY OF SURREY

Conclusions and Discussion Open Research Issues

Related to PBM and policies

- Translation and refinement
- Conflict detection and resolution

Related to wireless ad hoc and p2p networks

- Multi-hop and large-scale deployment
- P2P-aware routing protocols for ad hoc
 - Cross-layer / inter-layer (e.g. MPP)
- Suitable storage and distribution of PR
- P2P organisation of ad hoc networks (hypercluster)
- Security

Policy-based Management of Wireless Ad hoc and P2P Networks

Questions and Discussion

Antonis M. Hadjiantonis
CCSR, University of Surrey, UK
a.hadjiantonis@surrey.ac.uk

George Pavlou
NSRL, University College London, UK
g.pavlou@ee.ucl.ac.uk