Distributed and Autonomic Architecture for Real-Time Traffic Analysis

Cristian Morariu

Communication Systems Group, CSG Department of Informatics IFI, University of Zurich Switzerland

Outline

- Introduction and Motivation
- Distributed Architecture for Real-Time Traffic Analysis
- Applications
- Conclusions

Introduction and Motivation

- □ Link speeds double every year
- □ DRAM speed increases 7-9% every year
- → Main problem with IP traffic measurement: scalability
- Solution: packet sampling and flow sampling
 - Problem: measurement accuracy
 - lower sampling rate \rightarrow lower acuracy, few memory
- □ *IP Flow*: unidirectional stream of data between two endpoints
- □ *Flow Keys*: IP header fields that define an IP flow
- FlowID: result of a hash function applied on the flow keys of an IP packet
- □ *FlowID space*: whole range of possible *FlowIDs*

Use Case

- □ Traditional approach:
 - Traffic increase → replace traffic analysis hardware

- Distributed approach:
 - Traffic increase → make
 use of available resources

Approach

- Distribute all the tasks of traffic analysis using P2P mechanisms
 - Packet capturing
 - Packet analysis
 - Data storage

□ Have self-configuration mechanisms at all layers

General Architecture

 C_A , C_B , C_C : Capturing Nodes P_X , P_{XY} : Analyzer nodes

Processing Layer

Concepts

- □ Split the analysis responsibility based on flow ID
- □ Maintain the same sampling rate on the whole Flow ID space
- Permanent monitoring of processing performance achieved in all nodes
- Workload balance

Processing Network

□ Organized as a P2P overlay network

- Logical hierarchical organization
 Different organization strategies shall be analyzed
- Every subtree represents a continuous flow ID subspace
- Each processing node is responsible with a part of the flow ID space
- Depending on the node's position it may delegate some work to other nodes

Load Balancing

Horizontal Load Balance

□ Shifting of flow ID subspace

Vertical Load Balance

□ Changing places

Applications

- Distributed storage of IP flow records (DIPStorage)
- □ IP flow accounting
- Multi-point delay measurements
- Asymmetric route detection

Distributed Storage of IP Flow Records

- D Motivation:
 - Scalable storage for IP flow records
 - Fast query response
- Idea: Store the flow records within the processing network.
- Flow records are routed to the appropriate node based on their *FlowID*.
- Tank: A set of nodes that have the same set of routing rules.

DIPStorage Architecture

DipStorage Evaluation

Applications: IP Flow Accounting

- Motivation: IP flow accounting requires a stateful process for every active flow
 - Expensive overhead
 - For each incoming packet header:
 - Lookup flow record
 - Update counters
 - If distributed:
 - each node has fewer active flows \rightarrow faster lookup
 - Multiple lookups may be done in parallel

Applications: Multi-Point Delay Calculation

Problem: Calculate delays for each packet in blue and orange flow

Applications: Multi-Point Delay Calculation (1)

Applications: Multi-Point Delay Calculation (2)

Applications: Asymmetric Route Detection

Applications: Asymmetric Route Detection

Conclusion Remarks

□ Existing distributed approaches are based on "fix" configurations

- □ A P2P based approach was not yet investigated
- □ Such an approach allows:
 - Scalability
 - More accurate results by processing more data
 - Increased storage space for flow records
 - Faster query response for IP flow records repositories
 - Support for different analysis applications

Thank you

for your attention

Questions ?