Agent-based modelization for p2p networks

textbfJulien Siebert, PhD advisors : Vincent Chevrier et Laurent Ciarletta {julien.siebert, vincent.chevrier, laurent.ciarletta}@loria.fr

LORIA : MADYNES & MAIA teams - Campus Scientifique - BP 239 - 54506 Vandœuvre-lès-Nancy Cedex

March 4, 2008

1/31

A brief teams preview

MAIA

Intelligent and Autonomous MAchine.

- Distributed artificial intelligence.
- Multi-agent simulation.

PhD Thesis

Intersection of these domains.

MADYNES

MAnagement of DYnamic NEtworks and Security

Outline

2 Identified issues

- Modelling needs
- Simulation models

3 Proposal

- Model overview
- Implementation
- Experiments

PhD general context

- Dynamic, autonomous, ubiquitous networks and applications.
- Users' behaviour impacts the Quality of Services (QoS) and vice versa.

Problematic

Study mutual influences of user's behaviour and QoS in P2P systems.

P2P as a case study

- Expected advantages :
 - Robustness, fault tolerance.
 - Scalability (million users).
- Influence of user behaviour :
 - Resource availability.
 - Free-riding problem [AH00, HCW05].
 - Churn, Sessions durations.
 - Content.
 - Poisoning [Lia05].
 - Illegality.
- Influence of QoS :
 - Large bandwith consumption.
 - Downloading time.

Outline

Context and motivations

2 Identified issues

- Modelling needs
- Simulation models

3 Proposal

- Model overview
- Implementation
- Experiments

Conclusion and future works

Modelling needs

Why simulations

- Realistic systems :
 - Large scale : from 10^3 to 10^6 users.
 - Real P2P protocols.
- Control experimental parameters from networks and from users.
- Repeatable experiments.
- Granularity : assess influences of :
 - Local users' behaviour on global network.
 - Local network parts on behaviours.

Identified issues

To make several levels of representation interact : users and QoS.

Modelling needs

- Realistic network parameters (QoS).
- Dynamic, heterogeneous behaviours, actions, interactions (Users).

Network modelling : state of the art

Issue # 1

Model (some) realistic network parameters.

- Test protocols, network dimensioning (objective measures/metrics).
- Users reduced to an input (as a packets/messages generator).

Our observation

User's parameters (dynamic behaviours, heterogeneousness) :

- Seldom represented in simulation tools ([NLB⁺07]).
- Difficult to integrate into network model.

Multi-agent modelling : brief presentation

• Complex distributed systems simulations (social sciences [PA07], animation [mas]).

http://www.massivesoftware.com

Principle

- Directly represents entities behaviours, actions, interactions.
- Impact of local behaviour on the global system.

User's modelling : state of the art

Issue # 2

Model dynamic, heterogeneous behaviours, actions, interactions.

- Game theory : free-riding model [FPCS04].
- Multi-Agent based systems : PeerSim [Hal04, Pee07].

Our observation

Networks parameters (protocols, delays, error rates...) :

- Seldom represented in simulation tools.
- Difficult to integrate into users' models.

State of the art synthesis

In short :		network	application	user
	Agent-based simulation	×	×	\checkmark
	Network	\checkmark	\checkmark	×
	simulation			

PhD starting point

- Study the mutual influence of users' behaviour and QoS.
- Models exist for each level of representation.
- Integrate them into a multi-model approach.

Outline

Context and motivations

2 Identified issues

- Modelling needs
- Simulation models

Operation (3) Proposal

- Model overview
- Implementation
- Experiments

Conclusion and future works

Linking together multi-agent and P2P

Idea

Use the multi-agent paradigm to integrate and make models interact.

- Agent (proactive, dynamic...) : user.
- Interactions : P2P protocols.
- Environment (interaction medium) : underlying physical networks.

Outline

Context and motivations

2 Identified issues

- Modelling needs
- Simulation models
- Operation Proposal
 - Model overview
 - Implementation
 - Experiments

Conclusion and future works

Choosing a simulator

Case study problematic (Master thesis [SCC08])

Problems of sharing and pollution in a P2P file sharing network.

• Modelling needs :

- Behaviour : relatively simple (reactive agent).
- Interactions : real life protocols.
- Network : delays of messages/data transfers.
- Available tools :
 - Multi-agent simulator : network and protocol absent.
 - Packet level simulator : too detailed, scalability ?
 - Overlay Simulator : good compromise.

Peerfactsim.KOM (PFS) [Pee]

- Overlay Simulator, Darmstadt, Java.
- Protocols : Chord, Kademlia.
- Scalability.
 - Authors claimed 10⁵ nodes [Dar05].
 - Our current experiments : 50000 nodes.
- Architecture : representation layers available

http://peerfact.org

Our adaptation of PFS

PFS is mainly an overlay simulator.

- Data model + Pollution rate.
- Concrete exchange of data.
- A model of user : present hooks but not instanciate.

A model of user based upon reactive agent

- Definition :
 - Few internal states.
 - Compact representation of the environment and the other agents.
- Instanciation :
 - Perceptions
 - Upload/download bandwidth : cost for sharing/downloading.
 - Number of available sources : scarcity of a resource.
 - Expected downloading time : patience attribute.
 - Actions
 - Connexion/disconnexion.
 - Searching for/downloading resources.
 - Sharing or not resources.
 - Pollution rate controlling.
 - Internal states.
 - Willingness to share [FC05].
 - Pollution awareness [LCC⁺06].

Outline

Context and motivations

Identified issues

- Modelling needs
- Simulation models

Operation Proposal

- Model overview
- Implementation
- Experiments

Conclusion and future works

・ロト ・回ト ・ヨト ・ヨト

3

21/31

Experiments goals

Technical

- Bug free.
- Realistic behaviour.
- Scalability.

Conceptual

• First assessement of our approach.

Scenario of experiments

- Network of N users. Initially :
 - P initial publishers, f files each.
 - B_0 are polluted (bogus) G_0 are genuine. $B_0 + G_0 = P * f$.
- Step 1 : Searching for resources.
- Step 2 : Asking for download.
- Step 3 : Checking the download process. If download completed (4), otherwise (5).
- Step 4 : Controlling pollution. File ok : Sharing ? otherwise deletion and (5).
- Step 5 : Launch the whole process again ?

Results

Realistic behaviour + Scalability.

- Ideal case : no pollution $B_0 = 0$, no selfish user.
- Network size from N = 25 to N = 50000.
- Impact of the number of initial publishers P on the load per node.

Expected results

• when *P* increases, load equally spreads over all nodes.

Experiments

Result example (1)

Realistic behaviour + Scalability.

$N = 1000 \ f = 1 \ P = 10$

24/31

Experiments

Result example (1)

Realistic behaviour + Scalability.

 $N = 1000 \ f = 1 \ P = 10$

Experiments

Result example (2)

Realistic behaviour + Scalability.

$N = 1000 \ f = 1 \ P = 500$

Experiments

Result example (2)

Realistic behaviour + Scalability.

 $N = 1000 \ f = 1 \ P = 500$

Experiments

Result example with pollution

Same experiments with local polluters

 $N = 100 \ f = 1 \ P = 20 \ B_0 = 2$

Experiments

Result example with pollution

Same experiments with local polluters

 $N = 100 \ f = 1 \ P = 20 \ B_0 = 2$

^{26/31}

Analysis

Technical feasibility

- Platform assessment.
- Scalability : 50000 nodes in 5min, 4Gb RAM, java 1.6.

Conceptual approach

- Model + Tool + strengthen convictions.
- But results not mature, for the moment.
- Reach the limits of the tool (programming).

Outline

Context and motivations

Identified issues

- Modelling needs
- Simulation models
- 3 Proposal
 - Model overview
 - Implementation
 - Experiments

Take home messages

- Problem : study mutual influences of users' beahviour and QoS.
- Proposition : multi-model approach.
 - Different levels of representations.
 - agent + application + network (model).
- First implementation : adaptation an existing tool.
- First experiments : proof of concept.

Currents and future directions

- Study mutual influences of users' beahviour and QoS (P2P).
- Continue experiments.
- Multi-model issues : different time and space scales.
- Build a generic framework (dynamic, autonomous networks).

Conclusion and future works

Thank you for your attention

Questions ?

E. Adar and B. Huberman.

Free riding on gnutella, 2000.

Vasilios Darlagiannis.

Overlay Network Mechanisms for Peer-to-Peer Systems. PhD thesis, Vom Fachbereich Informatik der Technischen Universität Darmstadt, 2005.

Michal Feldman and John Chuang.

Overcoming free-riding behavior in peer-to-peer systems. *SIGecom Exch.*, 5(4):41–50, 2005.

Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica.

Free-riding and whitewashing in peer-to-peer systems.

In *PINS '04: Proceedings of the ACM SIGCOMM workshop on Practice and theory of incentives in networked systems*, pages 228–236, New York, NY, USA, 2004. ACM Press.

David Hales.

From selfish nodes to cooperative networks " emergent link-based incentives in peer-to-peer networks.

In *P2P '04: Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P'04)*, pages 151–158, Washington, DC, USA, 2004. IEEE Computer Society.

- Daniel Hughes, Geoff Coulson, and James Walkerdine. Free riding on gnutella revisited: The bell tolls? IEEE Distributed Systems Online, 6(6):1, 2005.
- Uichin Lee, Min Choiz, Junghoo Choy, M. Y. Sanadidiy, and Mario Gerla.
 - Understanding pollution dynamics in p2p file sharing.

In 5th International Workshop on Peer-to-Peer Systems (IPTPS'06), Santa Babara, CA, USA, February 2006.

Jian Liang.

Pollution in p2p file sharing systems, 2005.

References

S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers.

The state of peer-to-peer simulators and simulations. Accepted for editorial publication in ACM SIGCOMM journal for Computer Communication Review, 2007.

D. Phan and F. Amblard.

Agent-Based Modelling and Simulation in the Social and Human Sciences.

Bardwell Press, Oxford, 2007.

PeerfactSim.KOM: A Simulator for Large-Scale Peer-to-Peer Networks. http://www.peerfactsim.com.

- http://peersim.sourceforge.net/, 2007.
- Julien Siebert, Vincent Chevrier, and Laurent Ciarletta. Modélisation multimodèle des réseaux dynamiques : cas des réseaux pair-à-pair (in french).

References

In *JDIR'08 - 9èmes Journées Doctorales en Informatique et Réseaux*, Villeneuve d'Ascq, France, 2008.